Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(29): 8099-8119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34036858

RESUMO

Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.


Assuntos
Oryza , Amilose , Humanos , Minerais , Oryza/genética , Amido Resistente , Vitaminas
2.
Front Plant Sci ; 12: 771276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917106

RESUMO

Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.

3.
Foods ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34441694

RESUMO

Herein, optimized headspace solid phase microextraction with gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS/MS) was used to estimate the 2-acetyl-1-pyrroline (2-AP) in raw and cooked rice samples of ten different traditional and improved varieties. Furthermore, HS-SPME-GC-MS-based volatile profiling was subjected to untargeted analyses to identify major odorants in raw and cooked rice samples, and to understand chemical proximities among volatile profiles. Results showed that 2-AP content was remarkably increased in cooked rice compared to raw. Among the varieties studied, Pusa-1652 (Improved Kala Namak) and Kala Namak-2 were superior in the 2-AP content than Basmati varieties. Additionally, Govind Bhog, Kala Jeera and Jeera-32 had 2-AP content equivalent to or superior to Basmati rice varieties. Altogether, 18 and 22 volatiles were identified in the raw and cooked rice samples studied, respectively. Of these, ethyl butyrate, ethyl 3-methylbutanoate, 2-undecanone, ethyl benzoate, ethyl benzeneacetate, 2-methylnaphthalene, and 1-methylnaphthalene were characteristically detected in the cooked rice. The high amount of 2-ethyl-1-hexanol was uniquely found in raw rice samples, which can be a marker compound for freshly milled rice. Along with 2-AP, butanoic acid and benzoic acid derivatives, phenylethyl alcohol, ethyl 3-hydroxybutyrate, and indole may be responsible for the overall perceived characteristic Basmati-like aroma in cooked rice.

4.
Plants (Basel) ; 10(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540497

RESUMO

The present study was aimed at exploring the effect of soil application of different concentrations of orthophosphate (P) (0, 10, 20, 30, and 40 mg kg-1) on rice agronomic and yield parameters, arsenic (As) species accumulation, and polyphenol levels in the grain of rice grown under As spiked soil (10 mg kg-1). The contents of As species (As(V), As (III), MMA and DMA) and polyphenols in rice grain samples were estimated using LC-ICP-MS and LC-MS/MS, respectively. P treatments significantly reduced the toxic effects of As on agronomic parameters such as root weight and length, shoot and spike length, straw, and grain yield. Among the treatments studied, only the treatment of 30 mg kg-1 P helps to decrease the elevated levels of As (V), As (III), and DMA in rice grains due to As application. The study revealed that 30 mg kg-1 was the optimal P application amount to minimize AS accumulation in rice grains and As-linked toxicity on agronomic parameters and chlorophyll biosynthesis. Furthermore, the levels of trans-ferulic acid, chlorogenic acid, caffeic acid, and apigenin-7-glucoside increased in response to accumulation of As in the rice grain. In conclusion, the precise use of phosphorus may help to mitigate arsenic linked phytotoxicity and enhance the food safety aspect of rice grain.

5.
Nutrients ; 12(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707905

RESUMO

Previous research has not considered the effect of high amylose wheat noodles on postprandial glycaemia. The aim of the study is to investigate the effect of consumption of high amylose noodles on postprandial glycaemia over 2-h periods by monitoring changes in blood glucose concentration and calculating the total area under the blood glucose concentration curve. Twelve healthy young adults were recruited to a repeated measure randomised, single-blinded crossover trial to compare the effect of consuming noodles (180 g) containing 15%, 20% and 45% amylose on postprandial glycaemia. Fasting blood glucose concentrations were taken via finger-prick blood samples. Postprandial blood glucose concentrations were taken at 15, 30, 45, 60, 90 and 120 min. Subjects consuming high amylose noodles made with flour containing 45% amylose had significantly lower blood glucose concentration at 15, 30 and 45 min (5.5 ± 0.11, 6.1 ± 0.11 and 5.6 ± 0.11 mmol/L; p = 0.01) compared to subjects consuming low amylose noodles with 15% amylose (5.8 ± 0.12, 6.6 ± 0.12 and 5.9 ± 0.12 mmol/L). The total area under the blood glucose concentration curve after consumption of high amylose noodles with 45% amylose was 640.4 ± 9.49 mmol/L/min, 3.4% lower than consumption of low amylose noodles with 15% amylose (662.9 ± 9.49 mmol/L/min), p = 0.021. Noodles made from high amylose wheat flour attenuate postprandial glycaemia in healthy young adults, as characterised by the significantly lower blood glucose concentration and a 3.4% reduction in glycaemic response.


Assuntos
Amilose/análise , Glicemia/metabolismo , Farinha/análise , Período Pós-Prandial , Triticum/química , Adulto , Austrália , Índice de Massa Corporal , Estudos Cross-Over , Feminino , Manipulação de Alimentos , Humanos , Masculino , Amido/análise , Adulto Jovem
6.
J Nutr ; 149(8): 1335-1345, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162585

RESUMO

BACKGROUND: Conventional wheat-based foods contain high concentrations of readily digestible starch that commonly give these foods a high postprandial glycemic response and may contribute to the development of type 2 diabetes and cardiovascular disease. OBJECTIVES: The aim of this study was to determine if bread made from high-amylose wheat (HAW) and enriched in resistant starch dampens postprandial glycemia compared with bread made from conventional low-amylose wheat (LAW). METHODS: This single-center, randomized, double-blinded, crossover controlled study involved 7 consecutive weekly visits. On separate mornings, 20 healthy nondiabetic men and women (mean age 30 ± 3 y; body mass index 23 ± 0.7 kg/m2) consumed a glucose beverage or 4 different breads (each 121 g); LAW-R (refined), LAW-W (wholemeal), HAW-R, or HAW-W. The starch contents of the LAW and HAW breads were 24% and 74% amylose, respectively. Venous blood samples were collected at regular intervals before and for 3 h after the breakfast meal to measure plasma glucose, insulin, ghrelin, and incretin hormone concentrations, and the incremental area under the curve (AUC) was calculated (mmol/L × 3 h). Satiety and cravings were also measured at 30-min intervals during the postprandial period. RESULTS: HAW breads had a glycemic response (AUC) that was 39% less than that achieved with conventional wheat breads (HAW 39 ± 5 mmol/L × 3 h; LAW 64 ± 5 mmol/L × 3 h; P < 0.0001). Insulinemic and incretin responses were 24-30% less for HAW breads than for LAW breads (P < 0.05). Processing of the flour (wholemeal or refined) did not affect the glycemic, insulinemic, or incretin response. The HAW breads did not influence plasma ghrelin, or subjective measures of satiety or cravings during the postprandial period. CONCLUSIONS: Replacing LAW with HAW flour may be an effective strategy for lowering postprandial glycemic and insulinemic responses to bread in healthy men and women, but further research is warranted. This trial was registered at the Australian and New Zealand Clinical Trials Registry as ACTRN12616001289404.


Assuntos
Amilose/administração & dosagem , Glicemia/metabolismo , Período Pós-Prandial , Triticum/química , Adulto , Amilose/metabolismo , Estudos Cross-Over , Feminino , Trânsito Gastrointestinal , Glucose/administração & dosagem , Voluntários Saudáveis , Humanos , Incretinas/sangue , Insulina/sangue , Masculino , Saciação
7.
BMC Microbiol ; 15: 96, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947105

RESUMO

BACKGROUND: Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation. RESULTS: A series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media. CONCLUSIONS: Despite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Glicogênio/metabolismo , Viabilidade Microbiana , Deleção de Sequência , Biofilmes/crescimento & desenvolvimento , Temperatura Baixa , Dessecação , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Fisiológico
8.
Plant Biotechnol J ; 13(9): 1276-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25644858

RESUMO

Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down-regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.


Assuntos
Amilose/biossíntese , Triticum/genética , Alelos , Amilose/genética , Amilose/metabolismo , Cruzamentos Genéticos , Genes de Plantas/genética , Marcadores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Triticum/metabolismo
9.
Dig Dis Sci ; 60(6): 1624-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25616610

RESUMO

BACKGROUND AND AIM: Dietary fiber shortens gut transit time, but data on the effects of fiber components (including resistant starch, RS) on intestinal contractility are limited. We have examined RS effects in male Sprague-Dawley rats fed either a high-amylose maize starch (HAMS) or a wholemeal made from high-amylose wheat (HAW) on ileal and colonic contractility ex vivo and expression of genes associated with smooth muscle contractility. METHODS: Rats were fed diets containing 19 % fat, 20 % protein, and either low-amylose maize starch (LAMS), HAMS, wholemeal low-amylose wheat (LAW) or HAW for 11 week. Isolated ileal and proximal colonic sections were induced to contract electrically, or by receptor-independent (KCl) or receptor-dependent agents. Colonic gene expression was assessed using an Affymetrix microarray. RESULTS: Ileal contractility was unaffected by treatment. Maximal proximal colonic contractility induced electrically or by angiotensin II or carbachol was lower for rats fed HAMS and LAW relative to those fed LAMS (P < 0.05). The colonic expression of genes, including cholinergic receptors (Chrm2, Chrm3), serotonin receptors (Htr5a, Htr7), a protease-activated receptor (F2r), a prokineticin receptor (Prokr1), prokineticin (Prok1), and nitric oxide synthase 2 (Nos2), was altered by dietary HAMS relative to LAMS (P < 0.05). HAW did not significantly affect these genes or colonic contractility relative to effects of LAMS. CONCLUSIONS: RS and other fiber components could influence colorectal health through modulation of stool transit time via effects on muscular contractility.


Assuntos
Dieta Ocidental , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/genética , Expressão Gênica , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Amido/farmacologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Zea mays
10.
J Exp Bot ; 65(8): 2189-201, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24634486

RESUMO

Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8-12), and more intermediate chains (dp 13-20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sintase do Amido/genética , Amido/genética , Triticum/anatomia & histologia , Triticum/genética , Endosperma/anatomia & histologia , Endosperma/genética , Endosperma/metabolismo , Endosperma/ultraestrutura , Microscopia Eletrônica de Varredura , Proteínas de Plantas/metabolismo , Sementes/anatomia & histologia , Sementes/química , Sementes/genética , Sementes/ultraestrutura , Amido/metabolismo , Amido/ultraestrutura , Sintase do Amido/metabolismo , Triticum/metabolismo
11.
J Nutr ; 142(5): 832-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22457395

RESUMO

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A control diet included 7% fat, 13% protein, and LAMS. Colonocyte DNA single-strand breaks (SSB) were significantly higher (by 70%) in rats fed the Western diet containing LAMS relative to controls. Dietary HAW, HAMS, and HAMSB opposed this effect while raising digesta levels of SCFA and lowering ammonia and phenol levels. SSB correlated inversely with total large bowel SCFA, including colonic butyrate concentration (R(2) = 0.40; P = 0.009), and positively with colonic ammonia concentration (R(2) = 0.40; P = 0.014). Analysis of gut microbiota populations using a phylogenetic microarray revealed profiles that fell into 3 distinct groups: control and LAMS; HAMS and HAMSB; and LAW and HAW. The expression of colonic genes associated with the maintenance of genomic integrity (notably Mdm2, Top1, Msh3, Ung, Rere, Cebpa, Gmnn, and Parg) was altered and varied with RS source. HAW is as effective as HAMS and HAMSB in opposing diet-induced colonic DNA damage in rats, but their effects on the large bowel microbiota and colonocyte gene expression differ, possibly due to the presence of other fiber components in HAW.


Assuntos
Bactérias/efeitos dos fármacos , Colo/microbiologia , Colo/fisiologia , Neoplasias Colorretais/prevenção & controle , Dano ao DNA/fisiologia , Amido/farmacologia , Amilose/farmacologia , Ração Animal , Animais , Bactérias/crescimento & desenvolvimento , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Carboidratos da Dieta/farmacologia , Fibras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Masculino , Metagenoma/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Zea mays
12.
Carbohydr Polym ; 89(3): 979-91, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24750889

RESUMO

The relationships between starch structure and functionality are important in underpinning the industrial and nutritional utilisation of starches. In this work, the relationships between the biosynthesis, structure, molecular organisation and functionality have been examined using a series of defined genotypes in barley with low (<20%), standard (20-30%), elevated (30-50%) and high (>50%) amylose starches. A range of techniques have been employed to determine starch physical features, higher order structure and functionality. The two genetic mechanisms for generating high amylose contents (down-regulation of branching enzymes and starch synthases, respectively) yielded starches with very different amylopectin structures but similar gelatinisation and viscosity properties driven by reduced granular order and increased amylose content. Principal components analysis (PCA) was used to elucidate the relationships between genotypes and starch molecular structure and functionality. Parameters associated with granule order (PC1) accounted for a large percentage of the variance (57%) and were closely related to amylose content. Parameters associated with amylopectin fine structure accounted for 18% of the variance but were less closely aligned to functionality parameters.


Assuntos
Amilose/química , Hordeum/genética , Amido/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia em Gel , Eletroforese Capilar , Genes de Plantas , Hordeum/química , Fosfatos/metabolismo , Análise de Componente Principal , Espalhamento de Radiação , Difração de Raios X
13.
J Exp Bot ; 61(5): 1469-82, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20156842

RESUMO

The roles of starch branching enzyme (SBE, EC 2.4.1.18) IIa and SBE IIb in defining the structure of amylose and amylopectin in barley (Hordeum vulgare) endosperm were examined. Barley lines with low expression of SBE IIa or SBE IIb, and with the low expression of both isoforms were generated through RNA-mediated silencing technology. These lines enabled the study of the role of each of these isoforms in determining the amylose content, the distribution of chain lengths, and the frequency of branching in both amylose and amylopectin. In lines where both SBE IIa and SBE IIb expression were reduced by >80%, a high amylose phenotype (>70%) was observed, while a reduction in the expression of either of these isoforms alone had minor impact on amylose content. The structure and properties of the high amylose starch resulting from the concomitant reduction in the expression of both isoforms of SBE II in barley were found to approximate changes seen in amylose extender mutants of maize, which result from lesions eliminating expression of the SBE IIb gene. Amylopectin chain length distribution analysis indicated that both SBE IIa and SBE IIb isoforms play distinct roles in determining the fine structure of amylopectin. A significant reduction in the frequency of branches in amylopectin was noticed only when both SBE IIa and SBE IIb were reduced, whereas there was a significant increase in the branching frequency of amylose when SBE IIb alone was reduced. Functional interactions between SBE isoforms are suggested, and a possible inhibitory role of SBE IIb on other SBE isoforms is discussed.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Hordeum/enzimologia , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Southern Blotting , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/genética , Microscopia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia
14.
Theor Appl Genet ; 115(8): 1053-65, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17721773

RESUMO

Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.


Assuntos
Dosagem de Genes , Proteínas de Plantas/metabolismo , Sementes/genética , Sintase do Amido/genética , Amido/biossíntese , Triticum/genética , Biomarcadores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase , Sementes/enzimologia , Sementes/metabolismo , Amido/química , Sintase do Amido/fisiologia , Triticum/química , Triticum/enzimologia
15.
Funct Plant Biol ; 34(5): 431-438, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32689370

RESUMO

A line of wheat (Triticum aestivum L.), sgp-1, that does not express starch synthase II (SSII, also known as SGP-1) has previously been reported. In this study, F1 derived doubled haploid lines with homozygous wild type or mutant alleles for SGP-1 genes were identified from a cross between the original mutant and a wild type Australian cultivar. Analysis of the starch granules showed that in the mutant lines they are markedly distorted from 15 days postanthesis during grain development. Starch branching patterns showed an increase in the proportion of short chains (DP 6-10) at an earlier stage, but this increase became much more pronounced at 15 days postanthesis and persisted until maturity. There was also a consistent and drastic reduction throughout seed development in the relative amounts of starch branching enzyme II (SBEII, comprising SBEIIa and SBEIIb) and starch synthase I (SSI) bound to the starch granules. In the soluble phase, however, there was relatively little change in the amount of SBEIIb, SBEIIa or SSI protein. Therefore loss of SSII specifically leads to the loss of SBEIIb, SBEIIa and SSI protein in the granule-bound phase and the effect of this mutation is clearly manifest from the mid-stage of endosperm development in wheat.

16.
Proc Natl Acad Sci U S A ; 103(10): 3546-51, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16537443

RESUMO

Foods high in resistant starch have the potential to improve human health and lower the risk of serious noninfectious diseases. RNA interference was used to down-regulate the two different isoforms of starch-branching enzyme (SBE) II (SBEIIa and SBEIIb) in wheat endosperm to raise its amylose content. Suppression of SBEIIb expression alone had no effect on amylose content; however, suppression of both SBEIIa and SBEIIb expression resulted in starch containing >70% amylose. When the >70% amylose wheat grain was fed to rats in a diet as a wholemeal, several indices of large-bowel function, including short-chain fatty acids, were improved relative to standard wholemeal wheat. These results indicate that this high-amylose wheat has a significant potential to improve human health through its resistant starch content.


Assuntos
Amilose/metabolismo , Alimentos Geneticamente Modificados , Triticum/genética , Triticum/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/antagonistas & inibidores , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Animais , Dieta , Engenharia Genética , Glucanos/química , Nível de Saúde , Humanos , Intestino Grosso/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Plantas Geneticamente Modificadas , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Amido/química , Amido/metabolismo
17.
Planta ; 222(5): 899-909, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16172866

RESUMO

Studies of maize starch branching enzyme mutants suggest that the amylose extender high amylose starch phenotype is a consequence of the lack of expression of the predominant starch branching enzyme II isoform expressed in the endosperm, SBEIIb. However, in wheat, the ratio of SBEIIb and SBEIIa expression are inversely related to the expression levels observed in maize and rice. Analysis of RNA at 15 days post anthesis suggests that there are about 4-fold more RNA for SBE IIa than for SBE IIb. The genes for SBE IIa and SBE IIb from wheat are distinguished in the size of the first three exons, allowing isoform-specific antibodies to be produced. These antibodies were used to demonstrate that in the soluble fraction, the amount of SBE IIa protein is two to three fold higher than SBIIb, whereas in the starch granule, there is two to three fold more SBE IIb protein amount than SBE IIa. In a further difference to maize and rice, the genes for SBE IIa and SBE IIb are both located on the long arm of chromosome 2 in wheat, in a position not expected from rice-maize-wheat synteny.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , DNA Complementar/genética , DNA Complementar/isolamento & purificação , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Grão Comestível/enzimologia , Grão Comestível/genética , Expressão Gênica , Genes de Plantas , Hibridização in Situ Fluorescente , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
18.
Funct Plant Biol ; 31(6): 591-601, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32688931

RESUMO

The role of starch branching enzyme-I (SBE-I) in determining starch structure in the endosperm has been investigated. Null mutations of SBE-I at the A, B and D genomes of wheat were identified in Australian wheat varieties by immunoblotting. By combining individual null mutations at the B and D genomes through hybridisation, a double-null mutant wheat, which lacks the B and D isoforms of SBE-I, was developed. Wheat mutants lacking all the three isoforms of SBE-I were generated from a doubled haploid progeny of a cross between the BD double-null mutant line and a Chinese Spring (CS) deletion line lacking the A genome isoform. Comparison of starch from this mutant wheat to that from wild type revealed no substantial alteration in any of the structural or functional properties analysed. Further analysis of this triple-null mutant line revealed the presence of another residual peak of SBE-I activity, referred to as SBE-Ir, in wheat endosperm representing < 3% of the activity of SBE-I in wild type endosperm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...